3.27.15 \(\int \frac {(5-x) (3+2 x)^{3/2}}{(2+5 x+3 x^2)^{3/2}} \, dx\) [2615]

Optimal. Leaf size=143 \[ -\frac {2 \sqrt {3+2 x} (121+139 x)}{3 \sqrt {2+5 x+3 x^2}}+\frac {274 \sqrt {-2-5 x-3 x^2} E\left (\sin ^{-1}\left (\sqrt {3} \sqrt {1+x}\right )|-\frac {2}{3}\right )}{3 \sqrt {3} \sqrt {2+5 x+3 x^2}}-\frac {350 \sqrt {-2-5 x-3 x^2} F\left (\sin ^{-1}\left (\sqrt {3} \sqrt {1+x}\right )|-\frac {2}{3}\right )}{3 \sqrt {3} \sqrt {2+5 x+3 x^2}} \]

[Out]

-2/3*(121+139*x)*(3+2*x)^(1/2)/(3*x^2+5*x+2)^(1/2)+274/9*EllipticE(3^(1/2)*(1+x)^(1/2),1/3*I*6^(1/2))*(-3*x^2-
5*x-2)^(1/2)*3^(1/2)/(3*x^2+5*x+2)^(1/2)-350/9*EllipticF(3^(1/2)*(1+x)^(1/2),1/3*I*6^(1/2))*(-3*x^2-5*x-2)^(1/
2)*3^(1/2)/(3*x^2+5*x+2)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.05, antiderivative size = 143, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, integrand size = 29, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.172, Rules used = {832, 857, 732, 435, 430} \begin {gather*} -\frac {350 \sqrt {-3 x^2-5 x-2} F\left (\text {ArcSin}\left (\sqrt {3} \sqrt {x+1}\right )|-\frac {2}{3}\right )}{3 \sqrt {3} \sqrt {3 x^2+5 x+2}}+\frac {274 \sqrt {-3 x^2-5 x-2} E\left (\text {ArcSin}\left (\sqrt {3} \sqrt {x+1}\right )|-\frac {2}{3}\right )}{3 \sqrt {3} \sqrt {3 x^2+5 x+2}}-\frac {2 \sqrt {2 x+3} (139 x+121)}{3 \sqrt {3 x^2+5 x+2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[((5 - x)*(3 + 2*x)^(3/2))/(2 + 5*x + 3*x^2)^(3/2),x]

[Out]

(-2*Sqrt[3 + 2*x]*(121 + 139*x))/(3*Sqrt[2 + 5*x + 3*x^2]) + (274*Sqrt[-2 - 5*x - 3*x^2]*EllipticE[ArcSin[Sqrt
[3]*Sqrt[1 + x]], -2/3])/(3*Sqrt[3]*Sqrt[2 + 5*x + 3*x^2]) - (350*Sqrt[-2 - 5*x - 3*x^2]*EllipticF[ArcSin[Sqrt
[3]*Sqrt[1 + x]], -2/3])/(3*Sqrt[3]*Sqrt[2 + 5*x + 3*x^2])

Rule 430

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(1/(Sqrt[a]*Sqrt[c]*Rt[-d/c, 2]
))*EllipticF[ArcSin[Rt[-d/c, 2]*x], b*(c/(a*d))], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && Gt
Q[a, 0] &&  !(NegQ[b/a] && SimplerSqrtQ[-b/a, -d/c])

Rule 435

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[(Sqrt[a]/(Sqrt[c]*Rt[-d/c, 2]))*Ell
ipticE[ArcSin[Rt[-d/c, 2]*x], b*(c/(a*d))], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[a, 0
]

Rule 732

Int[((d_.) + (e_.)*(x_))^(m_)/Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[2*Rt[b^2 - 4*a*c, 2]*
(d + e*x)^m*(Sqrt[(-c)*((a + b*x + c*x^2)/(b^2 - 4*a*c))]/(c*Sqrt[a + b*x + c*x^2]*(2*c*((d + e*x)/(2*c*d - b*
e - e*Rt[b^2 - 4*a*c, 2])))^m)), Subst[Int[(1 + 2*e*Rt[b^2 - 4*a*c, 2]*(x^2/(2*c*d - b*e - e*Rt[b^2 - 4*a*c, 2
])))^m/Sqrt[1 - x^2], x], x, Sqrt[(b + Rt[b^2 - 4*a*c, 2] + 2*c*x)/(2*Rt[b^2 - 4*a*c, 2])]], x] /; FreeQ[{a, b
, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && NeQ[2*c*d - b*e, 0] && EqQ[m^2, 1/4]

Rule 832

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Sim
p[(-(d + e*x)^(m - 1))*(a + b*x + c*x^2)^(p + 1)*((2*a*c*(e*f + d*g) - b*(c*d*f + a*e*g) - (2*c^2*d*f + b^2*e*
g - c*(b*e*f + b*d*g + 2*a*e*g))*x)/(c*(p + 1)*(b^2 - 4*a*c))), x] - Dist[1/(c*(p + 1)*(b^2 - 4*a*c)), Int[(d
+ e*x)^(m - 2)*(a + b*x + c*x^2)^(p + 1)*Simp[2*c^2*d^2*f*(2*p + 3) + b*e*g*(a*e*(m - 1) + b*d*(p + 2)) - c*(2
*a*e*(e*f*(m - 1) + d*g*m) + b*d*(d*g*(2*p + 3) - e*f*(m - 2*p - 4))) + e*(b^2*e*g*(m + p + 1) + 2*c^2*d*f*(m
+ 2*p + 2) - c*(2*a*e*g*m + b*(e*f + d*g)*(m + 2*p + 2)))*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] &&
NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && LtQ[p, -1] && GtQ[m, 1] && ((EqQ[m, 2] && EqQ[p, -3] &
& RationalQ[a, b, c, d, e, f, g]) ||  !ILtQ[m + 2*p + 3, 0])

Rule 857

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dis
t[g/e, Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^p, x], x] + Dist[(e*f - d*g)/e, Int[(d + e*x)^m*(a + b*x + c*x^
2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0]
&&  !IGtQ[m, 0]

Rubi steps

\begin {align*} \int \frac {(5-x) (3+2 x)^{3/2}}{\left (2+5 x+3 x^2\right )^{3/2}} \, dx &=-\frac {2 \sqrt {3+2 x} (121+139 x)}{3 \sqrt {2+5 x+3 x^2}}+\frac {2}{3} \int \frac {118+137 x}{\sqrt {3+2 x} \sqrt {2+5 x+3 x^2}} \, dx\\ &=-\frac {2 \sqrt {3+2 x} (121+139 x)}{3 \sqrt {2+5 x+3 x^2}}+\frac {137}{3} \int \frac {\sqrt {3+2 x}}{\sqrt {2+5 x+3 x^2}} \, dx-\frac {175}{3} \int \frac {1}{\sqrt {3+2 x} \sqrt {2+5 x+3 x^2}} \, dx\\ &=-\frac {2 \sqrt {3+2 x} (121+139 x)}{3 \sqrt {2+5 x+3 x^2}}+\frac {\left (274 \sqrt {-2-5 x-3 x^2}\right ) \text {Subst}\left (\int \frac {\sqrt {1+\frac {2 x^2}{3}}}{\sqrt {1-x^2}} \, dx,x,\frac {\sqrt {6+6 x}}{\sqrt {2}}\right )}{3 \sqrt {3} \sqrt {2+5 x+3 x^2}}-\frac {\left (350 \sqrt {-2-5 x-3 x^2}\right ) \text {Subst}\left (\int \frac {1}{\sqrt {1-x^2} \sqrt {1+\frac {2 x^2}{3}}} \, dx,x,\frac {\sqrt {6+6 x}}{\sqrt {2}}\right )}{3 \sqrt {3} \sqrt {2+5 x+3 x^2}}\\ &=-\frac {2 \sqrt {3+2 x} (121+139 x)}{3 \sqrt {2+5 x+3 x^2}}+\frac {274 \sqrt {-2-5 x-3 x^2} E\left (\sin ^{-1}\left (\sqrt {3} \sqrt {1+x}\right )|-\frac {2}{3}\right )}{3 \sqrt {3} \sqrt {2+5 x+3 x^2}}-\frac {350 \sqrt {-2-5 x-3 x^2} F\left (\sin ^{-1}\left (\sqrt {3} \sqrt {1+x}\right )|-\frac {2}{3}\right )}{3 \sqrt {3} \sqrt {2+5 x+3 x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 30.24, size = 183, normalized size = 1.28 \begin {gather*} -\frac {2 \sqrt {3+2 x} \left (541+607 x+12 x^2\right )-274 \sqrt {5} \sqrt {\frac {1+x}{3+2 x}} (3+2 x)^2 \sqrt {\frac {2+3 x}{3+2 x}} E\left (\sin ^{-1}\left (\frac {\sqrt {\frac {5}{3}}}{\sqrt {3+2 x}}\right )|\frac {3}{5}\right )+64 \sqrt {5} \sqrt {\frac {1+x}{3+2 x}} (3+2 x)^2 \sqrt {\frac {2+3 x}{3+2 x}} F\left (\sin ^{-1}\left (\frac {\sqrt {\frac {5}{3}}}{\sqrt {3+2 x}}\right )|\frac {3}{5}\right )}{9 (3+2 x) \sqrt {2+5 x+3 x^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[((5 - x)*(3 + 2*x)^(3/2))/(2 + 5*x + 3*x^2)^(3/2),x]

[Out]

-1/9*(2*Sqrt[3 + 2*x]*(541 + 607*x + 12*x^2) - 274*Sqrt[5]*Sqrt[(1 + x)/(3 + 2*x)]*(3 + 2*x)^2*Sqrt[(2 + 3*x)/
(3 + 2*x)]*EllipticE[ArcSin[Sqrt[5/3]/Sqrt[3 + 2*x]], 3/5] + 64*Sqrt[5]*Sqrt[(1 + x)/(3 + 2*x)]*(3 + 2*x)^2*Sq
rt[(2 + 3*x)/(3 + 2*x)]*EllipticF[ArcSin[Sqrt[5/3]/Sqrt[3 + 2*x]], 3/5])/((3 + 2*x)*Sqrt[2 + 5*x + 3*x^2])

________________________________________________________________________________________

Maple [A]
time = 0.11, size = 131, normalized size = 0.92

method result size
default \(-\frac {\sqrt {3+2 x}\, \sqrt {3 x^{2}+5 x +2}\, \left (38 \sqrt {15}\, \sqrt {3+2 x}\, \sqrt {-2-2 x}\, \sqrt {-20-30 x}\, \EllipticF \left (\frac {\sqrt {45+30 x}}{5}, \frac {\sqrt {15}}{3}\right )+137 \sqrt {15}\, \sqrt {3+2 x}\, \sqrt {-2-2 x}\, \sqrt {-20-30 x}\, \EllipticE \left (\frac {\sqrt {45+30 x}}{5}, \frac {\sqrt {15}}{3}\right )+8340 x^{2}+19770 x +10890\right )}{45 \left (6 x^{3}+19 x^{2}+19 x +6\right )}\) \(131\)
elliptic \(\frac {\sqrt {\left (3+2 x \right ) \left (3 x^{2}+5 x +2\right )}\, \left (-\frac {2 \left (9+6 x \right ) \left (\frac {121}{9}+\frac {139 x}{9}\right )}{\sqrt {\left (x^{2}+\frac {5}{3} x +\frac {2}{3}\right ) \left (9+6 x \right )}}+\frac {236 \sqrt {45+30 x}\, \sqrt {-2-2 x}\, \sqrt {-20-30 x}\, \EllipticF \left (\frac {\sqrt {45+30 x}}{5}, \frac {\sqrt {15}}{3}\right )}{45 \sqrt {6 x^{3}+19 x^{2}+19 x +6}}+\frac {274 \sqrt {45+30 x}\, \sqrt {-2-2 x}\, \sqrt {-20-30 x}\, \left (-\frac {\EllipticE \left (\frac {\sqrt {45+30 x}}{5}, \frac {\sqrt {15}}{3}\right )}{2}-\EllipticF \left (\frac {\sqrt {45+30 x}}{5}, \frac {\sqrt {15}}{3}\right )\right )}{45 \sqrt {6 x^{3}+19 x^{2}+19 x +6}}\right )}{\sqrt {3+2 x}\, \sqrt {3 x^{2}+5 x +2}}\) \(198\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((5-x)*(3+2*x)^(3/2)/(3*x^2+5*x+2)^(3/2),x,method=_RETURNVERBOSE)

[Out]

-1/45*(3+2*x)^(1/2)*(3*x^2+5*x+2)^(1/2)*(38*15^(1/2)*(3+2*x)^(1/2)*(-2-2*x)^(1/2)*(-20-30*x)^(1/2)*EllipticF(1
/5*(45+30*x)^(1/2),1/3*15^(1/2))+137*15^(1/2)*(3+2*x)^(1/2)*(-2-2*x)^(1/2)*(-20-30*x)^(1/2)*EllipticE(1/5*(45+
30*x)^(1/2),1/3*15^(1/2))+8340*x^2+19770*x+10890)/(6*x^3+19*x^2+19*x+6)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((5-x)*(3+2*x)^(3/2)/(3*x^2+5*x+2)^(3/2),x, algorithm="maxima")

[Out]

-integrate((2*x + 3)^(3/2)*(x - 5)/(3*x^2 + 5*x + 2)^(3/2), x)

________________________________________________________________________________________

Fricas [C] Result contains higher order function than in optimal. Order 9 vs. order 4.
time = 0.50, size = 86, normalized size = 0.60 \begin {gather*} -\frac {479 \, \sqrt {6} {\left (3 \, x^{2} + 5 \, x + 2\right )} {\rm weierstrassPInverse}\left (\frac {19}{27}, -\frac {28}{729}, x + \frac {19}{18}\right ) + 2466 \, \sqrt {6} {\left (3 \, x^{2} + 5 \, x + 2\right )} {\rm weierstrassZeta}\left (\frac {19}{27}, -\frac {28}{729}, {\rm weierstrassPInverse}\left (\frac {19}{27}, -\frac {28}{729}, x + \frac {19}{18}\right )\right ) + 54 \, \sqrt {3 \, x^{2} + 5 \, x + 2} {\left (139 \, x + 121\right )} \sqrt {2 \, x + 3}}{81 \, {\left (3 \, x^{2} + 5 \, x + 2\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((5-x)*(3+2*x)^(3/2)/(3*x^2+5*x+2)^(3/2),x, algorithm="fricas")

[Out]

-1/81*(479*sqrt(6)*(3*x^2 + 5*x + 2)*weierstrassPInverse(19/27, -28/729, x + 19/18) + 2466*sqrt(6)*(3*x^2 + 5*
x + 2)*weierstrassZeta(19/27, -28/729, weierstrassPInverse(19/27, -28/729, x + 19/18)) + 54*sqrt(3*x^2 + 5*x +
 2)*(139*x + 121)*sqrt(2*x + 3))/(3*x^2 + 5*x + 2)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} - \int \left (- \frac {15 \sqrt {2 x + 3}}{3 x^{2} \sqrt {3 x^{2} + 5 x + 2} + 5 x \sqrt {3 x^{2} + 5 x + 2} + 2 \sqrt {3 x^{2} + 5 x + 2}}\right )\, dx - \int \left (- \frac {7 x \sqrt {2 x + 3}}{3 x^{2} \sqrt {3 x^{2} + 5 x + 2} + 5 x \sqrt {3 x^{2} + 5 x + 2} + 2 \sqrt {3 x^{2} + 5 x + 2}}\right )\, dx - \int \frac {2 x^{2} \sqrt {2 x + 3}}{3 x^{2} \sqrt {3 x^{2} + 5 x + 2} + 5 x \sqrt {3 x^{2} + 5 x + 2} + 2 \sqrt {3 x^{2} + 5 x + 2}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((5-x)*(3+2*x)**(3/2)/(3*x**2+5*x+2)**(3/2),x)

[Out]

-Integral(-15*sqrt(2*x + 3)/(3*x**2*sqrt(3*x**2 + 5*x + 2) + 5*x*sqrt(3*x**2 + 5*x + 2) + 2*sqrt(3*x**2 + 5*x
+ 2)), x) - Integral(-7*x*sqrt(2*x + 3)/(3*x**2*sqrt(3*x**2 + 5*x + 2) + 5*x*sqrt(3*x**2 + 5*x + 2) + 2*sqrt(3
*x**2 + 5*x + 2)), x) - Integral(2*x**2*sqrt(2*x + 3)/(3*x**2*sqrt(3*x**2 + 5*x + 2) + 5*x*sqrt(3*x**2 + 5*x +
 2) + 2*sqrt(3*x**2 + 5*x + 2)), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((5-x)*(3+2*x)^(3/2)/(3*x^2+5*x+2)^(3/2),x, algorithm="giac")

[Out]

integrate(-(2*x + 3)^(3/2)*(x - 5)/(3*x^2 + 5*x + 2)^(3/2), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} -\int \frac {{\left (2\,x+3\right )}^{3/2}\,\left (x-5\right )}{{\left (3\,x^2+5\,x+2\right )}^{3/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-((2*x + 3)^(3/2)*(x - 5))/(5*x + 3*x^2 + 2)^(3/2),x)

[Out]

-int(((2*x + 3)^(3/2)*(x - 5))/(5*x + 3*x^2 + 2)^(3/2), x)

________________________________________________________________________________________